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Key features
1. Require no dedicated resources

2. Almost no post-processing is needed

3. Low I/O overhead
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DeltaFS Indexed Massive Dir



Target workloads
1. Data-intensive HPC simulations

2. Not designed for indexing checkpoints

3. I/O bandwidth is limited
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DeltaFS Indexed Massive Dir



Agenda
Part 1 – Motivation

Part 2 – In-situ indexing design

Part 3 – API, LANL VPIC integration

Conclusion

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 4



Existing HPC builds indexes 
during post-processing

Delay queries until post-processing done (5-20% simulation time)

App Lustre

Queries

Indexing
Write

Tmp

1 2

3
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Problem faced:

The increasing time-to-science
Due to the growing gap between compute and I/O

Inefficient support on small data

simulation start query finish



Processing data in-transit while 
data is written to storage

Need separate resources for sorting and indexing

App Lustre QueriesIndexing

Tmp

MapReduce
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In-situ indexing directly on app 
nodes using app resources

Lustre

Queries

data + index

Tmp

No need for a separate indexing cluster
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App + Indexing
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Key idea:
Reuse storage write-back buffering and

idle CPU cycles for in-situ indexing



Example app: LANL VPIC

VPIC simulation Each VPIC process simulates 
millions of particles

Particle
40 bytes

Particles move across 
processes during a simulation

Small random writes
After simulation: high-selective queries
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TBs I/O per trajectory fetch

Query a single particle trajectory
A B C TBs search

Data object 1M...

Simulation procs

One output file per 
VPIC process

A
B

E
C

D
F

P P P

...

1M...

1MACE

file-per-process
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5,000x faster than baseline with 
DeltaFS in-situ indexing

0.0625 0.25 1 4 16 64 256 1024 4096
Query Time (sec)

DeltaFS (w/ 1 CPU core) Baseline (Full-system parallel scan w/ 3k CPU cores)

Time for reading a single particle trajectory
(10TB, 48 billion particles)
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System design:

Light-weight in-situ indexing

1. Tiny mem footprint
2. Zero write amplification

3. No read back

Part II



Resource-efficient indexing by 
log-structured I/O

Tiny mem footprint, full storage b/w util.

data log

index

Lustre

buffer
App thread

Indexing thread

App proc
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LSM-Trees compacts all the 
time, but we can’t afford it

Must aim for low I/O overhead at 10%-20%

Compute I/O Compute I/O

Total simulation

Compaction easily causes 1000% I/O overhead 
by reading/writing previously written data

…

PDSW-DISCS 2017http://www.pdl.cmu.edu/ 15



In-situ indexing by aggressive 
data partitioning

A BC D EF

A B C D E F
All-to-all shuffle

App process #0 App process #1 App process #2

…Compute I/O Compute I/O

Bound the number of data needed per query per timestep
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...

data block
index block

filter ...

data block
data block

In-situ indexing as a file system 
lib component

No dedicated cluster needed

shuffle 
receiver

Index Log

WriteBuffer

Data Log

shuffle 
sender

App data

All-to-all shuffle
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Programming interface:

Indexed Massive Directory (IMD)

Part III

In-situ indexing keyed on filenames

mkdir(“./particles”, DELTAFS_IMD)
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How to use Indexed Massive Dir (IMD)

1. Data searched together go into a single IMD file    
e.g. one file for each particle

2. Create as many IMD files as you want
e.g. 1 trillion files for 1 trillions particles

Query you data by “open-read-close”



VPIC using DeltaFS IMD

Simulation procs

One IMD file per 
VPIC particle

P P P 1M...

1T Indexed Massive 
Directory

file-per-particle

A
A

D
D

B
B

E
E

C
C

F
F...

Data object
1M...Index object
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A B C TBs MBs search



LANL Trinity Experiments

Compute Node
32 cores/node

…

1-99 compute nodes, 496 million – 48 billion particles

buffer
VPIC

VPIC-DeltaFS

buffer

VPIC-Baseline

VPIC

Queries

No post-processing

SSD

Burst-buffer Lustre

HDD
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DeltaFS indexing
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Conclusion

• Indexed Massive Dir (~3% app mem, compaction-free, POSIX API)

• Powered by Mercury RPC

• DeltaFS is one of the Mochi micro-services
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In-situ indexing for transparent, almost-free query acceleration
no dedicated nodes, no post-processing, ~15% I/O overhead

https://mercury-hpc.github.io/

https://press3.mcs.anl.gov/mochi/

https://github.com/pdlfs/deltafs

https://mercury-hpc.github.io/
https://press3.mcs.anl.gov/mochi/
https://github.com/pdlfs/deltafs

